Learning to Localize Using a LiDAR Intensity Map

Andrei Bârsan*,1,2, Shenlong Wang*,1,2, Andrei Pokrovsky¹, Raquel Urtasun^{1,2}

¹Uber Advanced Technologies Group

²University of Toronto

*Denotes Equal Contribution

Motivation & Challenges

- Localize w.r.t. a high-definition map with cm-level accuracy using LiDAR
- Enable use of high-definition maps for detection, prediction, etc.
- Several challenges must be overcome

Dynamic Objects

Degenerate geometry with no useful cues

Different LiDAR Types

Probabilistic Framework

- Compute 3 DoF pose w.r.t. map (x, y, heading).
- Online: At every time step (t) perform a bayesian filtering step:

(We learn the LiDAR term)

LiDAR Matching

• Operate in **bird's eye view** and **learn** LiDAR and map representation best suitable for matching.

Results Overview

	Median	99th percentile
Lateral Error (cm)	3.00	16.24
Longitudinal Error (cm)	4.33	22.18
Total Error (cm)	6.47	25.01

Results: Transfer to a Different LiDAR

 Our method is also able to transfer reasonably well to a different type of LiDAR without retraining or any intensity calibration.

Thank you for your attention!